Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 797
Filtrar
1.
Int J Biol Macromol ; 265(Pt 2): 131046, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518945

RESUMO

This work aims to fabricate antibacterial natural rubber latex composites by introducing different ratios of graphene oxide (GO) and nickel oxide (NiO) nanoparticles. The nanocomposites were prepared using latex mixing and a two-roll mill process, followed by molding with a heating hydraulic press. Detailed analyses were conducted to evaluate the rheological, chemical, physical, thermal, mechanical, and electrical performance of the composites. Fourier transform infrared spectroscopy (FTIR) was employed to analyze the interaction among different components, while the surface morphology was examined through the field emission scanning electron microscopy (FESEM) technique. The composites with a loading ratio of 1:2 of GO to NiO (optimized concentration) exhibited the highest tensile strength (24.9 MPa) and tear strength (47.4 N/ mm) among all the tested samples. In addition, the composites demonstrated notable antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The thermal stability of the composites was observed up to 315 °C, and their electrical resistivity lies in the insulating range across a temperature span of 25 °C to 50 °C. The research uncovers critical insights into advancing composite materials suitable for diverse applications, featuring inherent antibacterial attributes, robust mechanical properties, resilience to solvent, UV shielding properties, and controlled electrical resistivity capabilities.


Assuntos
Grafite , Nanopartículas , Níquel , Borracha , Borracha/química , Látex/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química
2.
Int J Biol Macromol ; 265(Pt 1): 130942, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493813

RESUMO

Leather shavings are generated as solid waste in the leather industry and may cause environmental pollution if not disposed judiciously. These solid wastes, primarily composed of collagen fibers (CFs), can be recycled as biomass composites. However, CFs are incompatible with natural rubber (NR) due to its hydrophilicity. Conventionally, the compatibility has been improved by utilizing silane coupling agents (SCAs) along with a large number of organic solvents, which further contribute to environmental pollution. In this study, we developed a novel complex coupling agent (CCA) to enhance the compatibility between CF and NR. The CCA was synthesized through a coordination reaction between Cr(III) and α-methacrylic acid (MAA). Cr(III) in the coupling agent coordinates with the active groups in CFs, while the unsaturated double bonds in MAA facilitate covalent crosslinking between the CCA and NR, improving compatibility. The coordination bonding between CF and NR exhibits strong interfacial interaction, endowing the composites with desirable mechanical properties. Moreover, the proposed method is an economical and green approach that can be used to synthesize CF-based composites without requiring organic solvents. Herein, a strategy promoted sustainable development in the leather industry has been established.


Assuntos
Resíduos Industriais , Borracha , Borracha/química , Resíduos Sólidos , Colágeno , Solventes
3.
Int J Biol Macromol ; 262(Pt 1): 129980, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340932

RESUMO

The present study investigates the biopolymer packaging film developed from carboxymethyl cellulose (CMC) with varying concentrations of natural rubber latex (NR) and oxidised natural rubber latex (ONR) using the solvent casting method. The physicochemical properties of the CMC/NR and CMC/ONR film samples were characterised using FTIR, TG/DTA, DSC, SEM, and XRD analysis. The increased concentration of NR and ONR helped to enhance mechanical characteristics, superior UV resistance, enhanced resistance to oxygen and water vapour penetration, improved dimensional stability, and a reduction in the moisture retention ability of the film samples. The CMC sample film, incorporated with 1.5 g ONR, was found to have more than a 100 % increase in the tensile strength. The tensile value increased from 21.56 MPa to 48.36 MPa, with the highest young modulus of 0.73 GPa and elastic stability of 7.14 %. The incorporation of NR and ONR significantly reduced the super water absorbency nature of the CMC film, and the moisture content values reduced from 21.6 % to ≅ 0.15 % for ONR-incorporated film. Additionally, the CMC/NR and CMC/ONR films exhibited high optical transparency values and were found to be fast biodegradable, substantiating their potential use in various packaging applications. Application of these materials in perishable fruit packaging has shown significant enhancement in shelf life, highlighting their practical efficiency and potential for sustainable packaging solutions.


Assuntos
Carboximetilcelulose Sódica , Borracha , Borracha/química , Carboximetilcelulose Sódica/química , Látex , Embalagem de Produtos , Embalagem de Medicamentos , Embalagem de Alimentos
4.
J Environ Manage ; 353: 120122, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308983

RESUMO

This review deals with waste rubber recycling by devulcanization treatment using microwave method. In fact, vulcanized rubbers have been extensively used in various fields due to their superior performances. Subsequently, the massive use of such materials, especially in the automotive industry, has generated a substantial amount of wastes which are not easily to be degraded due to the three-dimensional network formed by the vulcanization process. One of the optimal solutions for the successful recycling of rubber is devulcanization, i.e., the process in which the sulfur bonds in the vulcanized material are selectively broken. Currently, to achieve rubber devulcanization, the microwave treatment has been proposed as a promising alternative process due to its precise manipulation of process variables. Furthermore, the microwave process is easily to be coupled with effects of other elements such as chemical and swelling agents. In this work, different microwave devulcanization methods are reviewed, the utilization of the corresponding devulcanized materials has also been discussed. The reviewed contents are believed to be of great interest to academics and industries since they represent a great challenge from scientific, economic and environmental points of view.


Assuntos
Micro-Ondas , Borracha , Borracha/química , Borracha/metabolismo , Reciclagem/métodos
5.
Environ Sci Pollut Res Int ; 31(8): 11950-11967, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228949

RESUMO

Downcycled rubber, derived from end-of-life tires (ELTs), is frequently applied as crumb rubber (CR) as infill of synthetic turf in sports facilities. This practice has been questioned in recent years as numerous studies have reported the presence of potentially hazardous chemicals in this material. CR particles fall into the category of microplastics (MPs), making them possible vectors for emerging micropollutants. A preliminary study where volatile methylsiloxanes (VMSs) were found in CR originated the hypothesis that VMSs are present in this material worldwide. Consequently, the present work evaluates for the first time the levels and trends of seven VMSs in CR from synthetic turf football fields, while attempting to identify the main sources and impacts of these chemicals. A total of 135 CR samples and 12 other of alternative materials were analyzed, employing an ultrasound-assisted dispersive solid-phase extraction followed by gas chromatography-mass spectrometry (GC-MS), and the presence of VMSs was confirmed in all samples, in total concentrations ranging from 1.60 to 5089 ng.g-1. The levels were higher in commercial CR (before field application), a reflection of the use of VMS-containing additives in tire production and/or the degradation of silicone polymers employed in vehicles. The VMSs generally decreased over time on the turf, as expected given their volatile nature and the wearing of the material. Finally, the human exposure doses to VMSs in CR (by dermal absorption and ingestion) for people in contact with synthetic turf in football fields were negligible (maximum total exposure of 20.5 ng.kgBW-1.year-1) in comparison with the European Chemicals Agency (ECHA) reference doses: 1.35 × 109 ng.kgBW-1.year-1 for D4 and 1.83 × 109 ng.kgBW-1.year-1 for D5. Nevertheless, more knowledge on exposure through inhalation and the combined effects of all substances is necessary to provide further corroboration. This work proved the presence of VMSs in CR from ELTs, another family of chemical of concern to take into account when studying MPs as vectors of other contaminants.


Assuntos
Exposição Ambiental , Futebol Americano , Humanos , Exposição Ambiental/análise , Borracha/química , Microplásticos , Plásticos
6.
Environ Res ; 243: 117806, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043899

RESUMO

Non-targeted analysis (NTA) has great potential to screen emerging contaminants in the environment, and some studies have conducted in-depth investigation on environmental samples. Here, we used a NTA workflow to identify emerging contaminants in used tire particle (TP) leachates, followed by quantitative prediction and toxicity assessment based on hazard scores. Tire particles were obtained from four different types of automobiles, representing the most common tires during daily transportation. With the instrumental analysis of TP leachates, a total of 244 positive and 104 negative molecular features were extracted from the mass data. After filtering by a specialized emerging contaminants list and matching by spectral databases, a total of 51 molecular features were tentatively identified as contaminants, including benzothiazole, hexaethylene glycol, 2-hydroxybenzaldehyde, etc. Given that these contaminants have different mass spectral responses in the mass spectrometry, models for predicting the response of contaminants were constructed based on machine learning algorithms, in this case random forest and artificial neural networks. After five-fold cross-validation, the random forest algorithm model had better prediction performance (MAECV = 0.12, Q2 = 0.90), and thus it was chosen to predict the contaminant concentrations. The prediction results showed that the contaminant at the highest concentration was benzothiazole, with 4,875 µg/L in the winter tire sample. In addition, the joint toxicity assessment of four types of tires was conducted in this study. According to different hazard levels, hazard scores increasing by a factor 10 were developed, and hazard scores of all the contaminants identified in each TP leachate were summed to obtain the total hazard score. All four tires were calculated to have relatively high risks, with winter tires having the highest total hazard score of 40,751. This study extended the application of NTA research and led to the direction of subsequent targeting studies on highly concentrated and toxic contaminants.


Assuntos
Automóveis , Borracha , Borracha/química , Borracha/toxicidade , Meios de Transporte , Benzotiazóis/toxicidade
7.
Macromol Rapid Commun ; 45(2): e2300512, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837340

RESUMO

Epoxidized natural rubber (ENR) crosslinked using borax, which exhibits self-healing and self-repairing properties, is successfully developed. The crosslink formation of ENR by using borax under neutral and alkaline conditions is investigated. Fourier transform infrared spectroscopy (FTIR) shows that the borate-ester bond is formed in ENR prepared under both neutral and alkaline conditions, whereas boron nuclear magnetic resonance (11 B-NMR) results exhibit that the ENR prepared under alkaline conditions more actively forms crosslink networks with borax. Moreover, the crosslink density and gel content increase significantly with the presence of borax in alkaline conditions. The crosslink density and gel content of ENR with 10 phr borax are higher by 155% and 36%, respectively, than those of neat ENR. Furthermore, the formation of the crosslinking ENR by borax enhances self-healing and self-repairing properties. The healing efficiency significantly increases from 1.09% to 85.90%, when ENR is developed under alkaline conditions with 30 phr borax. These results represent the first successful demonstration of the efficient use of borax as a crosslinker in ENR, which exhibits its promising self-healing and self-repairing properties under atmospheric conditions without the need for external stimuli. The ENR prepared in this work holds great promise for various self-healing rubber applications.


Assuntos
Boratos , Borracha , Borracha/química , Compostos de Epóxi/química , Concentração de Íons de Hidrogênio
8.
Waste Manag ; 174: 451-461, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113670

RESUMO

Two samples of spent tire rubber (rubber A and rubber B) were submitted to thermochemical conversion by pyrolysis process. A450, B450 and A900, B900 chars were obtained from rubber A and rubber B at 450 °C and 900 °C, respectively. The chars were then applied as recovery agents of Nd3+ and Dy3+ from aqueous solutions in mono and bicomponent solutions, and their performance was benchmarked with a commercial activated carbon. The chars obtained at 900 °C were the most efficient adsorbents for both elements with uptake capacities around 30 mg g-1. The chars obtained at 450 °C presented uptake capacities similar to the commercial carbon (≈ 11 mg g-1). A900 and B900 chars presented a higher availability of Zn ions that favored the ion exchange mechanism. It was found that Nd3+ and Dy3+ were adsorbed as oxides after Zn was released from silicate structures (Zn2SiO4). A900 char was further selected to be tested with Nd/Dy binary mixtures and it was found a trend to adsorb a slightly higher amount of Dy3+ due to its smaller ionic radius. The uptake capacity in bicomponent solutions was generally higher than for single component solutions due to the higher driving force triggered by the higher concentration gradient.


Assuntos
Metais Terras Raras , Borracha , Borracha/química , Carvão Vegetal/química , Água , Adsorção
9.
Biomacromolecules ; 24(11): 4553-4567, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37813827

RESUMO

The biomass lignin is the only large-volume renewable feedstock that is composed of aromatics but has been largely underutilized and is sought for valorization as a value-added material. Recent research has highlighted lignin as a promising alternative to traditional petrol-based reinforcements and functional additives for rubber composites. This review summarized the recent advances in the functionalization of lignin for a variety of rubber composites, as well as the compounding techniques for effectively dispersing lignin within the rubber matrix. Significant progress has been achieved in the development of high-performance and advanced functional rubber/lignin composites through carefully designing the structure of lignin-based additives and the optimization of interfacial morphologies. This Review discussed the effect of lignin on composite properties, including mechanical reinforcement, dynamic properties, antiaging performance, and oil resistance, and also the advanced stimuli-responsive performance in detail. A critical analysis for the future development of rubber/lignin composites is presented as concluding remarks.


Assuntos
Lignina , Borracha , Borracha/química , Lignina/química , Biomassa
10.
Int J Biol Macromol ; 253(Pt 3): 126790, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37703967

RESUMO

Preparing a super-tough polylactic acid (PLA) material while maintaining its biodegradability is a significant challenge. This study synthesized a biodegradable unsaturated poly(butylene succinate-co-fumarate)-poly(ethylene glycol) multiblock copolymer (PBSFG) and dynamically vulcanized it with PLA to obtain super-tough blends. The PBSFG self-vulcanized and formed a crosslinked "hard-soft" core-shell rubber phase in the blending process, where the PBSF segment acted as the core and PEG as the shell. As a result, the elongation at break and notched Izod impact strength of PLA increased significantly from 3 % to 66 % and from 3.2 to 58.0 kJ/m2, respectively. Furthermore, adding a small amount of dicumyl peroxide (DCP) promoted dynamic vulcanization and improved the compatibility between PLA and PBSFG. With the addition of 0.03 % DCP, the elongation at break and notched Izod impact strength of PLA/PBSFG were further increased to 218 % and 88.9 kJ/m2, respectively. Meanwhile, the crystallization rate of PLA was enhanced by the addition of PBSFG and DCP. The PLA/PBSFG blends also degraded in a proteinase K Tris-HCl buffered buffer solution. Finally, fully biodegradable and super-tough PLA blends were achieved.


Assuntos
Éter , Poliésteres , Poliésteres/química , Borracha/química , Éteres , Etil-Éteres
11.
Int J Biol Macromol ; 253(Pt 2): 126782, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37690638

RESUMO

Latex is a colloidal suspension derived from the Hevea brasiliensis tree, derived from natural rubber, poly(isoprene), and assorted constituents including proteins and phospholipids. These constituents are inherent to both natural rubber and latex serum. This investigation was undertaken to examine the impact of the deproteinization process on chemical and biological dynamics of natural rubber latex. Natural Rubber (NR) extracted from the pure latex (LNCP) was obtained through centrifugation, followed by six rounds of solvent purification (LP6). The structure was characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), swelling test, surface zeta potential (ζ), scanning electron microscopy (SEM) and in vitro assay. The results revealed that the LP6 group presented decreased swelling kinetics, reduced cell adhesion and proliferation, and a smoother surface with decreased negative surface charge. Conversely, the LNCP group shown accelerated swelling, heightened adhesion and cellular growth, and a more negatively charged and rougher surface. As such, the attributes of latex serum and proteins have potential usage across numerous biomedical applications.


Assuntos
Hevea , Borracha , Borracha/química , Látex/química , Hevea/metabolismo , Fosfolipídeos/química , Microscopia Eletrônica de Varredura , Proteínas de Plantas/química
12.
Sci Total Environ ; 896: 165240, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406704

RESUMO

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone) is a degradation product of 6PPD, an antioxidant widely used in rubber tires. 6PPD-quinone enters aquatic ecosystems through urban stormwater runoff and has been identified as the chemical behind the urban runoff mortality syndrome in coho salmon. However, the available data suggest that the acute effects of 6PPD-quinone are restricted to a few salmonid species and that the environmental levels of this chemical should be safe for most fish. In this study, larvae of a "tolerant" fish species, Danio rerio, were exposed to three environmental concentrations of 6PPD-quinone for only 24 h, and the effects on exploratory behavior, escape response, nonassociative learning (habituation), neurotransmitter profile, wake/sleep cycle, circadian rhythm, heart rate and oxygen consumption rate were analyzed. Exposure to the two lowest concentrations of 6PPD-quinone resulted in altered exploratory behavior and habituation, an effect consistent with some of the observed changes in the neurotransmitter profile, including increased levels of acetylcholine, norepinephrine, epinephrine and serotonin. Moreover, exposure to the highest concentration tested altered the wake/sleep cycle and the expression of per1a, per3 and cry3a, circadian clock genes involved in the negative feedback loop. Finally, a positive chronotropic effect of 6PPD-quinone was observed in the hearts of the exposed fish. The results of this study emphasize the need for further studies analyzing the effects of 6PPD-quinone in "tolerant" fish species.


Assuntos
Benzoquinonas , Sistema Nervoso Central , Exposição Ambiental , Fenilenodiaminas , Borracha , Poluentes Químicos da Água , Peixe-Zebra , Animais , Benzoquinonas/análise , Benzoquinonas/toxicidade , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Ecossistema , Larva/efeitos dos fármacos , Larva/metabolismo , Fenilenodiaminas/análise , Fenilenodiaminas/toxicidade , Borracha/química , Borracha/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Int J Biol Macromol ; 244: 125359, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37321441

RESUMO

Natural Rubber (NR), extracted from Hevea brasiliensis rubber trees, is a biocompatible biopolymer with properties that support in the tissue repair process. However, its biomedical applications are limited due to the presence of allergenic proteins, hydrophobicity, and unsaturated bonds. To overcome these limitations and contribute to the development of new biomaterials, this study aims to deproteinize, epoxidize, and subject NR to copolymerization by grafting with hyaluronic acid (HA), which is widely recognized for its bioactive properties in the medical field. The deproteinization, epoxidation, and graft copolymerization through the esterification reaction were confirmed by Fourier Transform Infrared Spectroscopy and Hydrogen Nuclear Magnetic Resonance Spectroscopy analysis. Thermogravimetry and Differential Scanning Calorimetry demonstrated that the grafted sample exhibited a lower degradation rate and a higher glass transition temperature, indicating strong intermolecular interactions. Moreover, contact angle measurement revealed that the grafted NR exhibited a high hydrophilic character. The results obtained suggest the formation of a novel material with great potential for application in biomaterials involved in tissue repair processes.


Assuntos
Hevea , Borracha , Borracha/química , Ácido Hialurônico , Materiais Biocompatíveis , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Int J Biol Macromol ; 242(Pt 1): 124681, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141968

RESUMO

Conventional vulcanized rubbers cause a non-negligible waste of resources due to the formation of 3D irreversible covalently cross-linked networks. The introduction of reversible covalent bonds, such as reversible disulfide bonds, into the rubber network, is an available solution to the above problem. However, the mechanical properties of rubber with only reversible disulfide bonds cannot meet most practical applications. In this paper, a strengthened bio-based epoxidized natural rubber (ENR) composite reinforced by sodium carboxymethyl cellulose (SCMC) was prepared. SCMC forms a mass of hydrogen bonds between its hydroxyl groups and the hydrophilic groups of ENR chain, which gives the ENR/2,2'-Dithiodibenzoic acid (DTSA)/SCMC composites an enhanced mechanical performance. With 20 phr SCMC, the tensile strength of the composite increases from 3.0 to 10.4 MPa, which is almost 3.5 times that of the ENR/DTSA composite without SCMC. Simultaneously, DTSA covalently cross-linked ENR with the introduction of reversible disulfide bonds, which enables the cross-linked network to rearrange its topology at low temperatures and thus endows the ENR/DTSA/SCMC composites with healing properties. The ENR/DTSA/SCMC-10 composite has a considerable healing efficiency of about 96 % after healing at 80 °C for 12 h.


Assuntos
Carboximetilcelulose Sódica , Borracha , Borracha/química , Compostos de Epóxi/química , Dissulfetos , Sódio
15.
New Phytol ; 239(3): 1098-1111, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247337

RESUMO

Lettuce produces natural rubber (NR) with an average Mw of > 1 million Da in laticifers, similar to NR from rubber trees. As lettuce is an annual, self-pollinating, and easily transformable plant, it is an excellent model for molecular genetic studies of NR biosynthesis. CRISPR/Cas9 mutagenesis was optimized using lettuce hairy roots, and NR-deficient lettuce was generated via bi-allelic mutations in cis-prenyltransferase (CPT). This is the first null mutant of NR deficiency in plants. In the CPT mutant, orthologous CPT counterparts from guayule (Parthenium argentatum) and goldenrod (Solidago canadensis) were expressed under a laticifer-specific promoter to examine how the average Mw of NR is affected. No developmental defects were observed in the NR-deficient mutants. The lettuce mutants expressing guayule and goldenrod CPT produced 1.8 and 14.5 times longer NR, respectively, than the plants of their origin. This suggests that, although goldenrod cannot synthesize a sufficiently lengthy NR, goldenrod CPT has the catalytic competence to produce high-quality NR in the cellular context of lettuce laticifers. Thus, CPT alone does not determine the length of NR. Other factors, such as substrate concentration, additional proteins, and/or the nature of protein complexes including CPT-binding proteins, influence CPT activity in determining NR length.


Assuntos
Borracha , Solidago , Borracha/química , Borracha/metabolismo , Transferases/genética , Transferases/metabolismo
16.
Aquat Toxicol ; 260: 106587, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236119

RESUMO

Tire antioxidants are essential functional chemical additives in tire rubber production. Because of the characteristic easy precipitation in the water environment, the environmental pollution problem caused by tire antioxidants is concerning. To reveal the mechanism by which tire antioxidants reduce common oxidative factors (free radicals) in the environment and to control the potential biological thyroid hormone disorder risk of tire antioxidant derivatives, eight commonly used antioxidants in tire production were selected for analysis. Firstly, the ability of tire antioxidants to reduce three different free radicals was quantitatively characterized based on Gaussian calculation method and inferring the radical reduction mechanism of tire antioxidants. Moreover, using the PaDEL-Descriptor software and random forest algorithm found that the N-octanol/water partition coefficient, a structure descriptor of tire antioxidant molecules, significantly correlated with their reducing ability. Second, molecular docking and molecular dynamics methods were used to assess the thyroid hormone disorder risk to aquatic organisms of eight antioxidants after reducing three free radicals. And this is the first study to construct an assessment score list of potential thyroid hormone disorder risk of the derivatives of tire antioxidants after reducing free radicals to marine and freshwater aquatic organisms based on the risk entropy method. Through the screening of this list, it was found that the derivative of the antioxidant 2,2,4-trimethyl-1,2-dihydroquinoline oxidized by free radicals had the highest risk of thyroid hormone disorder. In addition, the top organism in the aquatic food chain was the most affected. This study also revealed that van der Waals interactions and hydrogen bonding were the main influencing factors of thyroid hormone disorder risk to aquatic organisms of the derivatives of tire antioxidants that reduce free radicals based on amino acid residue analysis. Overall, the results provide theoretical support for the selection of antioxidants and the avoidance and control of environmental risks in the tire rubber production process.


Assuntos
Antioxidantes , Poluentes Químicos da Água , Borracha/química , Organismos Aquáticos , Cadeia Alimentar , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Radicais Livres , Hormônios Tireóideos , Água Doce , Água
17.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047430

RESUMO

As a renewable biomass material, nano-cellulose has been investigated as a reinforcing filler in rubber composites but has seen little success because of its strong inclination towards aggregating. Here, a bottom-up self-assembly approach was proposed by regenerating cellulose crystals from a mixture of cellulose solution and natural rubber (NR) latex. Different co-coagulants of both cellulose solution and natural rubber latex were added to break the dissolution equilibrium and in-situ regenerate cellulose in the NR matrix. The SEM images showed that the sizes and morphologies of regenerated cellulose (RC) varied greatly with the addition of different co-coagulants. Only when a 5 wt% acetic acid aqueous solution was used, the RC particles showed an ideal rod-like structure with small sizes of about 100 nm in diameter and 1.0 µm in length. The tensile test showed that rod-like RC (RRC)-endowed NR vulcanizates with pronounced reinforcement had a drastic upturn in stress after stretching to 200% strain. The results of XRD and the Mullins effect showed that this drastic upturn in stress was mainly attributed to the formation of rigid RRC-RRC networks during stretching instead of the strain-induced crystallization of NR. This bottom-up approach provided a simple way to ensure the effective utilization of cellulosic materials in the rubber industry.


Assuntos
Látex , Borracha , Borracha/química , Látex/química , Água , Excipientes
18.
Drug Test Anal ; 15(7): 745-756, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912582

RESUMO

Nerve agents have been used recently in the Syrian civil war. Collecting relevant samples for retrospective identification of an attack is often problematic. The article deals with the possibility of using contaminated gloves as an analytical sample for evidence of the chemical weapons use. There have not yet been published studies dealing with the identification of chemical warfare agents in this type of matrix, where the diversity of chemical properties of gloves and the lifetime of the contaminated sample would be considered. Sarin, soman, and cyclosarin were used as contaminants in the study. Nitrile, latex, and vinyl disposable gloves were chosen as matrices. The identification method was gas chromatography. Six solvents commonly used in military laboratories were tested as extractants. The extraction procedure was optimized in terms of the appropriate method (vortex) and the required extraction time (1 min) and resulted in significant reduction in sample preparation time. The chromatographic background of the extracts was also monitored in order to find a method with the least number of peaks interfering in the identification. Suitable solvents were hexane and acetonitrile. The lifetime of the sample was also investigated. The worst result was recorded for latex. For individual contaminants, the time varied depending on the volatility. The developed procedures were successfully validated within a sample handling effects scenario. The results demonstrate that in the event of an ongoing military risk at the site of an attack, even discarded disposable rubber glove type samples can be used as evidence.


Assuntos
Agentes Neurotóxicos , Borracha , Borracha/química , Látex , Estudos Retrospectivos , Solventes , Luvas Protetoras
19.
Int J Biol Macromol ; 236: 123960, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921823

RESUMO

Biobased poly(lactic acid)/lignin (PLA/lignin) composites are limited by poor mechanical properties resulted from poor compatibility and low interfacial adhesion. Herein, we reported a novel approach to improve compatibility and interfacial adhesion of PLA/lignin composites via reactive compatibilization with epoxidized natural rubber (ENR) as a compatibilizer. Interfacial tension calculation indicated that lignin tended to act as interfacial phase between PLA and ENR, but morphology analysis demonstrated lignin was wrapped with a layer of ENR and dispersed in PLA matrix, which was attributed to the interfacial reaction of ENR with both PLA and lignin. The interfacial reaction was confirmed by Fourier transform infrared spectroscopy. The compatibility and interfacial adhesion between PLA and lignin were improved significantly by incorporation and increase in the content of ENR, as evidenced by the reduced interfacial gaps, blurry phase boundaries, and enhanced elastic response. As such, the mechanical properties of PLA/lignin composites were enhanced significantly. The tensile strength and elongation at break of PLA/lignin (W/W, 80/20) were improved by 15 % and 77 %, respectively, with the incorporation of only 1 wt% ENR. We believe this approach to compatibilize PLA/lignin composites is promising because it would not require costly modification of lignin and would not compromise the sustainability of composites.


Assuntos
Lignina , Borracha , Lignina/química , Borracha/química , Poliésteres/química , Resistência à Tração
20.
Environ Sci Technol ; 57(14): 5621-5632, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36996351

RESUMO

6PPD, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (TP), 6PPD-quinone (6PPDQ), during exposure to gas-phase ozone. Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation. To address these data gaps, gas-phase ozonation of 6PPD was conducted over 24-168 h and ozonation TPs were characterized using high-resolution mass spectrometry. The probable structures were proposed for 23 TPs with 5 subsequently standard-verified. Consistent with prior findings, 6PPDQ (C18H22N2O2) was one of the major TPs in 6PPD ozonation (∼1 to 19% yield). Notably, 6PPDQ was not observed during ozonation of 6QDI (N-(1,3-dimethylbutyl)-N'-phenyl-p-quinonediimine), indicating that 6PPDQ formation does not proceed through 6QDI or associated 6QDI TPs. Other major 6PPD TPs included multiple C18H22N2O and C18H22N2O2 isomers, with presumptive N-oxide, N,N'-dioxide, and orthoquinone structures. Standard-verified TPs were quantified in roadway-impacted environmental samples, with total concentrations of 130 ± 3.2 µg/g in methanol extracts of tire tread wear particles (TWPs), 34 ± 4 µg/g-TWP in aqueous TWP leachates, 2700 ± 1500 ng/L in roadway runoff, and 1900 ± 1200 ng/L in roadway-impacted creeks. These data demonstrate that 6PPD TPs are likely an important and ubiquitous class of contaminants in roadway-impacted environments.


Assuntos
Antioxidantes , Benzoquinonas , Fenilenodiaminas , Borracha , Antioxidantes/química , Ozônio/química , Borracha/química , Água/química , Fenilenodiaminas/química , Benzoquinonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...